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When a crystal contains more than one identical molecule or sub-unit in the crystallographic asymmetric 
unit, the structure factors must satisfy a set of complex linear equations. Given a set of structure ampli- 
tudes for a structure with the postulated non-crystallographic symmetry, the particular nature of the 
eigenvalue spectrum of the matrix of the equations provides a formal basis for an iterative procedure for 
generating the phases of the structure factors from the equations. The method has been tested on a 
number of model structures. An estimate is given of how strong the non-crystallographic symmetry 
constraints must be in order to generate a unique set of phases. 

Introduction 

In a previous paper (Crowther, 1967) it was shown that 
the structure-factor equations, which may be con- 
structed when a crystal contains more than one iden- 
tical molecule or sub-unit within the crystallographic 
asymmetric unit (Main & Rossmann, 1966), can be 
written in the form 

H F = F .  (1) 

Here F is a vector whose elements are the complex 
structure factors out to the resolution to which we are 
working and H is a hermitian matrix (Hrs = H*, where 
the asterisk denotes complex conjugate) describing the 
relative geometry of the sub-units. The elements of H 
are expressed in terms of the rotations and translations 
relating the various sub-units, which we assume are 
known, so that the elements of H can be evaluated 
numerically for any given arrangement of sub-units. 

Any eigenvector of the matrix H corresponding to 
a unit eigenvalue is a possible solution of (1) and con- 
versely the number of independent solutions of (1) is 

equal to the number of unit eigenvalues of the matrix 
H. The Fourier transform of the particular set of struc- 
ture factors constituting an eigenvector of H will be 
called an eigendensity. Eigenvectors and eigendensities 
corresponding to unit eigenvalues will be termed 'al- 
lowed'. Any structure with the postulated non-crystal- 
lographic symmetry may, to the resolution to which 
we are working, be expressed as a linear combination 
of the allowed eigendensities and correspondingly its 
transform may be expressed as a linear combination 
of the allowed eigenvectors. The allowed eigendensities 
form a more appropriate set of functions in which to 
expand a density with non-crystallographic symmetry 
than the more normally used Fourier terms. 

Turning now to structure determination, let us take 
an unknown structure with known non-crystallo- 
graphic symmetry. The question we pose is whether, 
given a set of measured structure amplitudes, it is pos- 
sible to use the constraints introduced by non-crystal- 
lographic symmetry to solve the structure. For sim- 
plicity we take the space group to be P 1 and let us 
suppose that (2N+1) reflexions are to be included, 
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that is N independent reflexions plus the N Friedel 
related reflexions plus the F0 term. At this resolution 
the matrix H will have m allowed eigenvectors, 
(Ul...um), where m < N .  The transform, F, of the 
structure must be expressible as a linear combination 
of the allowed eigenvectors in the form 

m 
F =  E muj (2) 

j = l  

where the/t~ are real (Crowther, 1967). The N unknown 
phases may be eliminated from (2) to give a set of 
(N+ 1) simultaneous quadratic equations for the m 
unknowns/zj which involve only the measured inten- 
sities, namely 

]Fnl2= l~ ~, lqlZ~U~hUkn , h = 0 , 1 , . . .  N (3) 
j = l k = l  

where uja is the h component of the eigenvector uj. 
A plot of the number, m, of unit eigenvalues as ordi- 
nate against the number, N, of independent reflexions 
included, when the equations are truncated at different 
resolutions, gives a straight line, whose gradient is the 
fractional decrease in the number of parameters needed 
to describe the system. 

If the gradient of the (m, N) plot were less than unity, 
the problem should in general be determined, since the 
number of unknowns is then less than the number of 
equations. In order for there to be a unique solution 
however, it will be shown that the gradient of the (m, N) 
plot must be considerably less than unity. In the Ap- 
pendix it is shown that for space group P 1 the gradient 
of the ( m , N )  plot is less than (2U/V) ,  where U is the 
volume of a sub-unit and V is the volume of the unit 
cell. The gradient of the (m, N) plot therefore decreases 
and the strength of constraint increases as the number 
of sub-units in the asymmetric unit increases. 

Although the above formulation (3) enables a quan- 
titative measure of the constraints introduced by the 
non-crystallographic symmetry to be given, it is not 
very useful for structure determination, since there 
is no simple method of solving a large set of simultane- 
ous quadratic equations. In any case the coefficients 
U[nU~a in (3) become difficult to compute when the 
number of reflexions included is large. Accordingly a 
different approach has been used, though still based 
on the eigenvalue analysis described above. The meth- 
od, which is iterative, attempts to determine structure 
factor phases, rather than the coefficients,/#, in the 
expansion of the transform in terms of the allowed 
eigenvectors. 

An iterative method of phasedetermination 

We assume that the iterative phase determination has 
been initiated in the way described below. Let us sup- 
pose that at some stage of phase determination we 
have an approximate set of phases which, when com- 
bined with the observed structure amplitudes, gives a 
structure factor vector which will be denoted by F(r). 

Since the phases are approximate, the transform of 
F(r) will not in general have the required non-crystal- 
lographic symmetry. F(r) will not be a solution of 
equations (1) and will therefore contain components 
of non-allowed eigenvectors. We may write 

m ,u~ °u, +2N+~ 
F(r) = Z Z /z~r)uj, 

j = l  j=m.-t-1 

where the summation is split into two parts correspond- 
ing to the allowed and non-allowed components re- 
spectively. In the Appendix to Crowther (1967) it was 
proved that the eigenvalues of matrix H satisfy the 
condition 0 < 2j < 1. A better solution of the equations 
may therefore be produced by multiplying F(r) by ma- 
trix H giving 

G(r+l) = I-IF(r) 

= - p ( r ) u / +  Z (4) 
j = l  j = m + l  

Multiplication by matrix H leaves the allowed com- 
ponents, which have eigenvalue unity, unchanged but 
reduces the contribution from each non-allowed com- 
ponent by a factor equal to the corresponding eigen- 
value. In particular, contributions from eigenvectors 
with eigenvalue zero will be completely removed. The 
importance of having an eigenvalue spectrum lying 
between 0 and 1 is now apparent. 

The moduli of the elements of the resulting vector 
G(r+a) will not now be equal to the observed structure 
amplitudes, so that the modulus of each element must 
be individually rescaled. This operation may be writ- 
ten as: 

F (r+l) = S(r+l)G(r+x) (5) 

where S(r+l) is the diagonal reseating matrix. Com- 
bining (4) and (5) we may eliminate G(r+l) and write 

F(r+l) = S (r+l)}]~(r) . (6) 

Equation (6) forms the basis for the iterative phasing 
procedure. Each step of the iteration consists of mul- 
tiplying the current approximation vector by the ma- 
trix H and then reseating each structure amplitude to 
its observed value. It is important to note that, although 
the iterative process is based on the underlying eigen- 
value and eigenvector analysis of the matrix H, it is 
not necessary to know the eigenvalues or eigenvectors 
explicitly. 

For computational purposes the elements of the 
diagonal reseating matrix are given by: 

Sgn + l )=  lFnl/l G(n'+ l)l . 

However if we wish to investigate the iteration analyt- 
ically, we find that the setting up of the reseating ma- 
trix is essentially a non-linear operation, since the 
elements are given by: 

f2N+ 1 2N+ 1 "~ -1/2 
/ 

t j = l  k = l  
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Thus rescaling reintroduces or reinforces non-allowed 
components, so that the next approximation to the 
solution still has the form: 

F ( r + l )  ~, ~./~r+ 1)Uj ..t_ 2N+ 
1 

= ~ /t~"+Duj. 
j = l  j = m + l  

A necessary condition for convergence of an iterative 
process of the type defined by (6) would be that the 
contribution from the non-allowed components should 
be smaller at the ( r+  1)th stage than at the rth stage. 
The contribution from the non-allowed components 
can be simply expressed, since it follows from the or- 
thonormality of the eigenvectors that at any stage of 
the iteration the complete set of/~j must satisfy: 

2N+ I 2N+ I N 
.V., (p~,'))2= ~ (/l~r+D)2= E lFhl2. 

j = l  j = l  h=--N 

Thus a necessary condition for convergence is" 
2N+ 1 2N+ 1 

j = m + l  j = m + l  

A sufficient condition for convergence would be that 
2N+ 1 

1~(~7)) 2 ~ 0  as r ~ .  
j = m + l  

Because of the analytical form of the rescaling matrix 
any attempt to demonstrate convergence by these 
means quickly leads to intractable algebra, even if a 
number of simplifying assumptions are made. It is 
hoped though that the non-allowed contributions re- 
introduced by the rescaling will be smaller than the 
non-allowed contributions removed by multiplying by 
the matrix H, so that the iterative process will con- 
verge. The examples discussed below show this~to be 
the case. 

An alternative way of considering the phasing pro- 
cedure is in terms of a complex vector space. The al- 
lowed eigenvectors of H define a subspace of dimen- 
sion m in a space of dimension (2N+ 1). The phasing 
procedure attempts to find a vector F lying in the al- 
lowed subspace, the moduli of whose elements are 
equal to the observed structure amplitudes. Successive 
applications of the matrix H have the effect of pro- 
jecting into the allowed subspace the vector F(r) re- 
presenting an approximate solution. Strictly speaking 
the condition that F lies in a subspace is not quite precise 
since we have shown that F must be a real linear com- 
bination of the allowed eigenvectors, whereas the gen- 
eral subspace condition admits of complex linear com- 
binations of the allowed eigenvectors. Granted, how- 
ever, that the initial approximation is chosen to satisfy 
the Friedel relation, all subsequent iterates will also 
satisfy it, since the Friedel character is preserved under 
transformations of the type considered. Clearly the 
strength of the geometrical constraint imposed on F 
increases as the relative dimension of the allowed sub- 
space decreases. This relative dimensionality of the al- 
lowed subspace is simply one half the gradient of the 
appropriate (m, N) plot. 

We have considered so far the convergence of the 
phasing process to a solution; we have not considered 
the uniqueness of this solution. Is it possible for there 
to be more than one structure which has the given 
structure amplitudes and which satisfies the particular 
non-crystallographic symmetry? This is analogous to 
asking about the existence of homometric structures 
(Patterson, 1944), though the discussion of these is 
generally restricted to the case of point atoms, whereas 
our analysis of non-crystallographic symmetry has not 
been so restricted. When the density is not restricted 
to point atoms and the structure amplitudes are in any 
case subject to error, the question has to be phrased 
in much vaguer terms; namely do there exist signi- 
ficantly different structures which have the postulated 
non-crystallographic symmetry and whose structure 
amplitudes do not differ significantly from the observed 
values? It will be shown in the next section that for a 
particular one-dimensional example containing three 
sub-units there are at least three solutions. A general 
answer to the uniqueness question can not yet be given. 
Clearly the more restricted the allowed subspace the 
more likely the solution is to be unique. However, the 
restrictedness of the subspace may not be a sufficient 
criterion for uniqueness, since for given non-crystal- 
lographic symmetry it is possible that some permitted 
sets of structure amplitudes will lead to a unique solu- 
tion whereas others will not. 

Mode of application of the iterative phasing procedure 

At the start of the iterative phase determination the 
only phase which is known is that of the F0 term, which 
we assume to be real and positive. The phase deter- 
ruination may proceed in one of two ways. In the first 
way the initial approximation vector F(0) has its ele- 
ments set equal to the corresponding structure ampli- 
tudes, all the phases being zero, and we operate from 
the beginning on a structure factor vector containing 
all reflexions. The second way is more like the proce- 
dure of Main & Rossmann (1966). At first the ap- 
proximation vector contains only those reflexions close 
to the origin of reciprocal space, since these are the 
ones which interact most strongly with the known F0 
term; as before, their phases are initially set to zero. 
After refining the phases of these reflexions, a new 
band of reflexions is included and their phases refined, 
while holding the existing phase estimates fixed. After 
this partial refinement of the newly introduced reflex- 
ions, all reflexions so far included are allowed to refine 
together. The procedure continues in this way, phase 
information being gradually extended outwards from 
the origin of reciprocal space. 

In the first method we are working in a space of 
fixed dimension equal to the total number (2N0+ 1) of 
reflexions included in the structure determination and 
the initial approximation lies a long way from the 
solution point. In the second method we are working 
in a series of subspaces, the dimensions of which even- 
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tually increase to (2N0+ 1) and where after refinement 
at any stage we have an approximation to the solution 
which fits the currently included reflexions as well as 
possible. The dimension of the allowed subspace into 
which we are projecting will also increase, but the 
linearity of the (m, N) plot means that the ratio of the 
dimension of the currently allowed subspace to the 
dimension of the subspace spanned by the currently 
included • reflexions remains constant. 

Clearly the paths traced by the successive approx- 
imation vectors F(r) are likely to be very different, since 
in the first method they can lie anywhere in the com- 
plete space of dimension (2N0 + 1) whereas in the sec- 

• ond methodthey are constrained to lie in a series of 
subspaces spanned by the reflexions currently included 
in the refinement. It is possible therefore, if there is 
more than one solution to a particular problem, that 
application of these different phasing methods will de- 
monstrate its existence. 

The speed of refinement may be followed by ob- 
serving the mean phase change, fi0, between successive 
iterates. The discrepancy, R, between the observed am- 
plitudes and the calculated amplitudes of an iterate 
before rescaling gives a measure of how far we are 
from a solution. They are defined formally by: 

1 N 
12 I arg ~ r + l ) - a r g  F(~)[, 

~O= (2N+ 1) h=-n  
N N 

R =  ( r, IIFnI-IG~)II)I( r., I F n l )  • 
h = - - N  h =  --N 

The choice of origin for the crystal is determined by 
the way in which the envelopes around the sub-units 
are specified. Phases generated during the refinement 
are referred to the origin chosen for specifying the 
sub-unit geometry. The enantiomorphy of the final 
structure will also be fixed by the sub-unit geometry, 
provided the arrangement of sub-units within the unit 
cell is enantiomorphic. For suppose we have a problem 
with matrix H and solution vector F so that 

F = H F .  (7) 

The structure factor vector F* representing the struc- 
ture of opposite hand will not in general satisfy these 
equations. Taking the complex conjugate of (7) we have 

F* = H ' F *  . 

Hence F* is a solution of (7) if and only if H* = H  
which implies that H is real. This means either that 
the arrangement of envelopes and the structure are 
centrosymmetric, so that the question of enantiomor- 
phy does not arise, or that the envelopes themselves 
are centrosymmetric while the structure is not. In the 
latter case it is clear that a centrosymmetric geometrical 
constraint can only determine the real parts of struc- 
ture factors, while the imaginary parts and therefore 
the enantiomorphy remain undefined. The one further 
ambiguity, that of distinguishing the positive from the 
corresponding negative electron density solution, both 

of which satisfy the phase equations, is overcome by 
specifying that the F0 term must be positive. This seems 
in general sufficient to ensure that the iterative phasing 
procedure generates the positive rather than the cor- 
responding negative density solution (Rossmann & 
Blow, 1963). 

Application to some one-dimensional examples 

It seemed simplest initially to apply the phasing tech- 
nique to some one-dimensional examples. In particular 
it was thought to be interesting to try the three sub- 
unit example published by Main & Rossmann (1966). 
The fractional sub-unit size is 0.29 with sub-unit centres 
at 0.2, 0.5 and 0-83; amplitudes and phases of reflexions 
are given out to h = 44. The (m, N) plot for this arrange- 

I I I  I 1 

(a) 

0.5 

0.4 

0.3- 

0.2 

0.1 

0 

I I1 r ] 

(b) 

,b 2'o 3'o 
Number of refinements 

(c) 

Fig. 1. Phase determination for a one-dimensional example 
containing three sub-units (Main & Rossmann, 1966). 
(a) postulated structure; (b) structure generated by the first 
phasing procedure; (c) behaviour of the R value during 
refinement. 

q- V IF V I-F V I- 

Fig.2. Phase determination for a one-dimensional example 
containing three sub-units (Main & Rossmann, 1966): the 
structure generated by the second phasing procedure. 
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ment of sub-units has gradient 0.56, so that the problem 
appears to be well overdetermined. The structure cal- 
culated from the given amplitudes and phases is shown 
in Fig. l(a). The first phasing technique, that is, re- 
peated projection of the vector containing the 45 avail- 
able independent structure amplitudes, converged well 
and after 30 iterations the value of R had fallen to 
0.008. However the calculated phases were very dif- 
ferent from the postulated ones and the structure ob- 
tained from the calculated phases and given amplitudes 
is shown in Fig. l(b). The behaviour of R during the 
refinement is given in Fig. l(e). Application of the 
second phasing procedure, in which phase information 
is extended outwards from the origin, gives yet another 
structure with R < 0-01 as shown in Fig. 2. Clearly then, 
the solution to this problem is not unique, since we 
have generated three structures having the given non- 
crystallographic symmetry and structure amplitudes. 
The solution point corresponding to the postulated 
structure does not seem to be accessible to the projec- 
tion methods used. However the iterative methods do 
converge and the suggestion that the different projec- 
tion methods might generate different solutions, when 
more than one exists, seems justified. 

An example containing four sub-units was tried next, 
with sub-unit size 0.21 and sub-unit centres at 0, 0.22, 
0.46 and 0.72, reflexions out to h=45 being included. 
The gradient of the (m, N) plot is 0.40. The postulated 
structure is shown in Fig. 3(a). Application of the sec- 
ond phasing method gave good results out to h = 34, 
at which point the mean phase error was 23 o. Beyond 
this the structure amplitudes are small and phasing 
breaks down. The structure obtained from the calcu- 
lated phases [Fig. 3(b)] is very similar to the postulated 
structure. Application of the first phasing method also 
converged but did not give the postulated structure. 

This rather brief discussion of some one-dimensional 
examples shows that the phasing method does con- 
verge. The fact that the answers are not unique is the 
fault of the problems, not of the phasing method. Ac- 

(o) 

"I I'; V I " [  v v I - - i  v V ,~-v v IV \ 
(b) 

Fig.3. Phase determination for a one-dimensional example 
containing four sub-units: (a) postulated structure; (b) struc- 
ture generated by the second phasing procedure. 

cordingly it was decided to study some two-dimen- 
sional problems to see whether the constraints intro- 
duced by non-crystallographic symmetry would be 
strong enough to ensure unique solutions. 

Some two-dimensional examples 

Application of the phasing procedures to a two-dimen- 
sional example containing two sub-units failed to give 
good results, despite the fact that the gradient of the 
corresponding (m,N) plot was 0-36. However the 
methods did give good results with a three sub-unit 
example and this will be discussed next. 

The model structure was based on the molecule 
1,3,5-triamino-2,4,6-trinitrobenzene (Cady & Larson, 
1965). The structure of this molecule is shown in Fig.4, 
the hydrogen atoms of the amino groups being omitted. 
The envelope enclosing the reference sub-unit is shown 
as a dotted rectangle, this shape being chosen for ease 
of calculation of the matrix H. The other two sub- 
units are generated by threefold rotation of the ref- 
erence sub-unit about the centre of the cell. The gradi- 
ent of the (m,N) plot for this arrangement of rectang- 
ular sub-units is 0.18. Fig.5 is a histogram showing 
the distribution of eigenvalues when the innermost 69 
reflexions are included. (Note that this includes only 
35 independent reflexions.) It can be seen that the 
majority of the eigenvalues (50 out of 69) are less than 
0.05, so that the application of the matrix H will ef- 
fectively remove a large part of the non-allowed com- 
ponents from the current approximation vector. 

The molecule was placed in a square cell of side 9 A 
and structure factors were calculated to a resolution 
of 1"0 A, with the assumption that all 18 atoms were 
identical. The result of the Fourier synthesis using 
these model structure factors is shown in Fig. 6. 

The second phasing method was applied to the 
structure amplitudes. Reflexions were included by 
bands of 0.10 in (2 sin 0/2), a new band of reflexions 
being added when the mean phase change produced 
by a refinement of the phases already included fell 
below 0.1 o. The phasing procedure converged well and 
when refinement was terminated the mean phase error, 
excluding structure factors with very small amplitudes, 
whose phases are poorly determined, was 22 °. The R 
value at this point was 14%. A Fourier synthesis using 
the generated phases and postulated structure ampli- 
tudes, gave the result shown in Fig.7. The chief dif- 
ference between the calculated structure and the postu- 
lated one lies in the relative weights of the atoms rather 
than their positions. The variation of the mean phase 
error with (2 sin 0/2) at various stages of refinement 
is shown in Fig. 8. These plots have a very similar form 
to those given by Main (1967). In both examples the 
phase error, which is a rapidly increasing function of 
(2 sin 0/2) when reflexions out to (2 sin 0/2)= 0.8 are 
included, falls dramatically when reflexions out to 1 A_ 
are included; at this stage only the last band of re- 
flexions to be introduced had bad phase errors. 
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Application of the first phasing procedure gave very 
similar results to those already described. The behavi- 
our during refinement of the mean phase error and 
R value are shown in Fig.9. After 150 projections of 
the complete vector, the mean phase change between 
projections had fallen to less than 0.1 °, at which point 
the R value was 13% and the mean phase error 26 °. 
Refinement was continuing but very slowly. 

These results suggest that in this case the constraints 
introduced by the non-crystallographic symmetry are 
sufficiently strong to generate a reasonably good set 
of phases. If we regard the problem as one of generat- 
ing a set of phases to minimize the value of the R value, 
we may say that the R value has a single very shallow 
minimum; that is, the solution is unique but poorly 
defined. The absolute difference in R values produced 
by substitution of the postulated structure factors into 
the equations and by refinement is only 1%. These two 
sets of phases have nevertheless a mean difference of 
approximately 20 °, although the corresponding struc- 
tures are very similar. The four sub-unit example con- 
sidered by Main (1967) clearly had a much sharper 
minimum, which is to be expected since the maximum 
gradient of the (m, N) plot for his example, as predicted 
by the fraction (2U]V), is 0.08 and the actual gradient 
will be even smaller. The gradient of the (m, N) plot 
for our example was 0.18. 

Extension of the theory to two crystal forms 

All discussion has been limited to the case where the 
independent sub-units occur within a single crystal 
form. Is it possible to extend the theory to the case 
where a given sub-unit occurs in more than one crystal 
form, as done by Main & Rossmann (1966)? The 
problem is of course that the introduction of a new 
crystal form produces information at a new set of 
sampling points, rather than simply increasing the in- 
formation available at the existing lattice points. Sup- 
pose we have two crystal forms with structure factor 
vectors Fa and F2, where, when working to a given 

resolution, these vectors lie in two spaces of different 
dimension. The vectors satisfy equations of the form 

HnFx =Fa (8) 

H22F,=F2. (9) 

Either or both of the crystal forms may contain only 
a single sub-unit in the asymmetric unit, in which ease 
the corresponding equations arise from exclusion of 
density only (Main & Woolfson, 1963) and not from 
non-crystallographic symmetry. Constraints arising 
from exclusion are of the same form as those coming 
from non-crystallographic symmetry but are much 
weaker. I f  the two crystal forms contain identical sub- 
units, their transforms must in addition satisfy con- 
necting relations of the form 

Q 

\ 
r J "  

I ! 
! 

I 
I 
I [;y ! I 
I 
! 

. 1  

a 

Fig.4. Model structure based on 1,3,5-triamino-2,4,6-trinitro- 
benzene. The choice of reference sub-unit is indicated by the 
dotted rectangle. Other sub-units are generated by threefold 
rotation about the origin. 
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H12F2 = F1 
HE1F1 = F2 (10) 

where H12, H21 are rectangular matrices representing 
mappings from a space of one dimension into another 
space of different dimension. The meaning of equation 
(10) is that if we take a structure satisfying the postu- 

lated non-crystallographic symmetry of crystal 1 and 
operate on its transform, F1, with the matrix H21, we 
generate a new vector F2 referring to crystal 2. The 
transform of this vector has sub-units which are iden- 
tical in structure to the sub-units in crystal 1 but which 
are arranged according to the non-crystallographic 
symmetry postulated for crystal 2. 

Fig. 6. Fourier synthesis using structure factors computed from the model structure. 

Fig. 7. Fourier synthesis using postulated structure amplitudes and phases generated by the second phasing procedure. 
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By considering the algebraic form of the connecting 
equations, which are set up in a similar way to those 
for a single crystal form with non-crystallographic sym- 
metry (Crowther, 1967), it can be shown that the ma- 
trices Hxz, HE1 of the two sets of cohnecting equations 
are related in a rather simple way. In particular it is 
possible to write the two sets of connecting equations 
in terms of a single matrix M in the form 

M F 2  = k2F1 ( 1 1 )  

M+F1 =klF2 (12) 
t 

where M + denotes the complex conjugate of the trans- 
pose of M and kl, k2 are constants depending on the 
unit-cell sizes of the two crystals and on the numbers 
of sub-units in the two asymmetric units. In addition 
the matrices M , M  + can be defined in such a way that 
they satisfy further relations. To show that this is 
plausible multiply equation (12) by M and substitute 
from equation (11) to give 

MM+F1 = klkzF1 • 

Comparing this with (8) we see that it should be pos- 
sible to make 

1 
- -  M M  + = H n  . (13) 
(klk2) 

Thus if we perform a mapping M + from the first space 
to the second and then a reverse mapping M from the 
second back to the first, the product of these cross 
mappings is a mapping in the first space, which ex- 
presses the constraints arising from the non-crystal- 
lographic symmetry in the first crystal. In a similar 
way we may show 

1 
- - - -  M+M = H22. (14) (k~k2) 

The relations imply that if we find vectors F1, F2 which 
satisfy (11) and (12), they will also automatically satisfy 
(8) and (9). When we include only a finite number 
of reflexions from the two crystals, the matrix products 
M M + , M + M  will suffer truncation effects which make 
(13) and (14) only approximately true. However only 
those reflexions lying on the edge of the region of 
reciprocal space being considered will be significantly 
affected. 

We now wish to know whether there is a method of 
using (11) and (12) for structure determination. Since 
(11) and (12) define mappings between spaces of dif- 
ferent dimension, it is not possible to apply the eigen- 
value analysis directly. However by adding respec- 
tively klFl,kzFz to equations (11) and (12) we obtain 
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Fig. 8. Distribution of the mean phase error at various stages of 
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klF1 q- 1VIF2 = (kl  -t- k2)F1 , (15) 

M+F1 + k2F2 = (kl + k2)F2 • (16) 

These may be written in partitioned matrix form as 

klI Fx =(kl  kz) Fx + 

where I is the identity matrix. Putting 

1 /k l I  M ) , F =  (F~) 
f i -  (kl + k2) \ M  + k2I F 

this becomes 
I q F = F .  (17) 

Thus we can represent the two sets of equations (11) 
and (12) by a single set of equations in a compound 
space of dimension equal to the sum of the dimensions 
of the separate transform spaces. The matrix f t  is 
hermitian and can be shown to have an eigenvalue 
spectrum satisfying 0< 2j < 1. Equations (20) describ- 
ing the non-crystallographic symmetry constraints in 
the two crystal case therefore have an identical form 
to those arising from non-crystallographic symmetry 
in a single form. 

The strength of constraints introduced by having 
two crystal forms can now be measured by the gradient 
of the (m, N) plot for the matrix [-t in just the same 
way as for the single crystal case, except that now the 
number of unit eigenvalues is plotted against the sum 
of the number of independent reflexions included for 
each crystal. Similarly (20) can be used as a basis for 
an iterative phasing procedure, of the same type as 
that described for a single crystal, except that now 
between applications of matrix H the two parts of the 
vector F must be scaled to the structure amplitudes 
appropriate for the two crystal forms. In practice, be- 
cause of the special form of I~l, it is convenient to re- 
write (17) for the iteration as: 

Gi,+l) __ (MI~) + klFir))/(kl + k2) 

Gir+ 1) = (M+I~{) + kz ~f))/(kl + k2), 

where F_(r+l) ~(r+1) are to be rescaled to the structure " J 1  , u 2  
amplitudes appropriate for the two crystals. A com- 
puter program written to perform the iteration need 
only store the matrix M, which has far fewer elements 
than I~I. 

Summary 

The results described in this paper, taken in conjunc- 
tion with those of Main (1967), are encouraging. They 
suggest that although the presence of two identical 
sub-units in the asymmetric unit is not a sufficiently 
strong constraint to generate reliable phase informa- 
tion, the presence of three or four such sub-units can 
provide reliable phase information. In particular the 
gradient of the (m, N) plot, which gives a measure of 
the strength of the constraints introduced by the non- 

crystallographic symmetry, must be less than about 0.2 
and preferably even smaller. 

APPENDIX 
The gradient of the (m,N) plot 

Although in any given case the gradient of the (m,N) 
plot can be found by computing the eigenvalue spec- 
trum of the matrix H when it is truncated at different 
resolutions, it would be useful if an estimate could be 
made without going through this tedious computation. 
The argument given in Crowther (1967), which predicts 
that the gradient is 1In in the case where the asym- 
metric unit contains n sub-units, is incorrect and should 
be replaced by the following. 

Let us take n equal sub-units of size U in a one- 
dimensional unit cell of size V, so that the sub-units 
occupy a fraction (nU/V) of the unit cell and let us 
consider reflexions out to h = N say. The Fourier terms 
corresponding to these reflexions form, to this resolu- 
tion, a complete set of functions in the mathematical 
sense. There are (2N+ 1) such terms, namely Fo, A1,B1, 
• . .  Aar, Bar. We may take independent linear combina- 
tions of these terms to form eigendensities, of which 
a fraction (nU/V) will have density only within the 
sub-units, while the remaining fraction ( 1 -  n U] V) will 
have density only in the gaps between the sub-units. 
This means that we can construct (nU]V)(2N+I) 
independent densities which vanish outside the sub- 
units. By considering the symmetry of these functions, 
it is clear that only 1/n of them can be chosen to give 
equal densities within the sub-units; that is, only a 
fraction 1In of them correspond to allowed eigen- 
densities. We therefore have the relation: 

or  

m--n  

We therefore predict that the gradients of the various 
(m, N) plots for different numbers of sub-units, shown 
in Crowther (1967), (Fig. 4), should be given by (2 U/V). 
Table 1 shows this prediction to be very good. 

Table 1. Agreement between observed and predieted gra- 
dients of(m, N) plots for some one-dimensional examples 

Predicted 
Number of gradient Observed 
sub-units (2 U] V) gradient 

2 0.71 0-70 
3 0.58 0-56 
4 0-42 0-40 

In two- and three-dimensional examples the agree- 
ment between predicted and observed gradients is not 
nearly so good. This is for the following reason. We 
have divided the original set of functions into a set 
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complete on the sub-units and a set complete on the 
gaps, both sets vanishing on the sub-unit boundaries. 
Clearly the original set of functions can give non-zero 
densities on the sub-unit boundaries. In one dimension, 
where the boundaries are points, this distinction is not 
important.  In two- and three-dimensions where the 
boundaries become respectively closed curves and sur- 
faces, the effect is significant and means that the ob- 
served gradient of the (m, N) plots for two- and three- 
dimensional examples is always less than (2U/V). 

Most of the material described in this paper is taken 
from a Ph.D. thesis submitted to Cambridge Univer- 

sity. The author is grateful to Dr D. M. Blow for help- 
ful discussions during the preparation of this manu- 
script. The work was undertaken while the author was 
holder of a Medical Research Council Scholarship. 
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The Crystal Structure of Tris(eyelopentadienyl)samarium 011).* 
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The crystal structure of tris(cyclopentadienyl)samarium (III), Sm(CsHs)3, has been determined by analysis 
of three-dimensional X-ray diffraction data. The crystals are orthorhombic, space group Pbcm, with 
eight chemical formula units per unit cell. Cell dimensions are: a=  14.23, b= 17.40 and c=9.73 A. The 
heavy atom positions were deduced from Patterson projections, and cyclopentadienyl rings were found 
from difference syntheses. The final R value for the 1266 observed reflexions is 12.5%. The eight 
Sm(CsHs)s in the unit cell are divided into two symmetrically independent, and structurally different 
groups (A and B). The A and B groups form close-packed infinite chains along the c axis and the A and 
B chains alternate in layers parallel to (100) with an average spacing of ½a. In either group, the samarium 
atom could be described as having a distorted tetrahedral environment and approximately three pairs 
of electrons are responsible for the bonding between the metal atom and the cyclopentadienyl rings. 
Both types of structures are disordered, and a plausible mechanism for the disorder is discussed. 

Introduction 

This paper deals with the crystal structure determina- 
tion of tris(cyclopentadienyl)samarium(III),Sm(CsHs)3. 
The present work is the second of a series on the study 
of metal-cyclopentadienyls (Wong, Yen, & Lee, 1965), 
and Sm(CsHs)3 is the first rare earth tris(cyclopenta- 
dienyl) complex ever to be studied. 

This compound has been reported as having a pure 
electrostatic type of bonding (Birmingham & Wilkin- 
son, 1956). However, in view of the much darker 
colour of the compound in its crystalline state (orange 
red) as compared with the samarium ion (light yellow), 
and the low sublimation temperature ( ~  160 °C in vac- 
uum), we suspect that the bonding may be somewhat 
covalent. Also, there exists almost no structural in- 
formation concerning bonding between rare earth metal 

* Presented at the Tenth International Conference on 
Coordination Chemistry, Nikko, Japan, 1967. 

t Present address: Chemistry Department, University of 
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and organo-carbon atoms. For the above reasons, we 
feel that careful structural study of this compound is 
of interest. 

Experimental 

The air and moisture sensitive compound was synthe- 
sized in this laboratory according to Birmingham & 
Wilkinson (1956). The single crystals used were grown 
by sublimation at ~ 160°C under reduced pressure in 
thin-walled Pyrex capillaries. Laue photographs 
showed it to be of mmm symmetry; zero-layer Weis- 
senberg photographs taken along the three principal 
axes, with Mo K~ radiation, showed the following sys- 
tematic absences: h00 for h odd, Okl for k odd and hOl 
for l odd, which would make the space groups Pbcm 
or Pbc2a most probable. However, in either case the 
extinction condition h00 for h odd had to be considered 
as incidental. The centrosymmetric space group Pbcm 
was tentatively chosen, and it was later shown to be 
correct. For data collection, the equi-inclination, mul- 
tiple-film Weissenberg technique was used with Zr-fil- 
tered Mo Kc~ radiation. Copper foils were inserted be- 


